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Two-dimensional spatial linear filters are constrained by general uncertainty relations that limit their attainable
information resolution for orientation, spatial frequency, and two-dimensional (2D) spatial position. The theoreti-
cal lower limit for the joint entropy, or uncertainty, of these variables is achieved by an optimal 2D filter family
whose spatial weighting functions are generated by exponentiated bivariate second-order polynomials with com-
plex coefficients, the elliptic generalization of the one-dimensional elementary functions proposed in Gabor’s fa-
mous theory of communication [J. Inst. Electr. Eng. 93, 429 (1946)]. The set includes filters with various orienta-
tion bandwidths, spatial-frequency bandwidths, and spatial dimensions, favoring the extraction of various kinds
of information from an image. Each such filter occupies an irreducible quantal volume (corresponding to an inde-
pendent datum) in a four-dimensional information hyperspace whose axes are interpretable as 2D visual space, or-
ientation, and spatial frequency, and thus such a filter set could subserve an optimally efficient sampling of these
variables. Evidence is presented that the 2D receptive-field profiles of simple cells in mammalian visual cortex
are well described by members of this optimal 2D filter family, and thus such visual neurons could be said to opti-
mize the general uncertainty relations for joint 2D-spatial-2D-spectral information resolution. The variety of
their receptive-field dimensions and orientation and spatial-frequency bandwidths, and the correlations among
these, reveal several underlying constraints, particularly in width/length aspect ratio and principal axis organiza-
tion, suggesting a polar division of labor in occupying the quantal volumes of information hyperspace. Such an en-
semble of 2D neural receptive fields in visual cortex could locally embed coarse polar mappings of the orientation—
frequency plane piecewise within the global retinotopic mapping of visual space, thus efficiently representing 2D

spatial visual information by localized 2D spectral signatures.

1. INTRODUCTION
The need for the visual nervous system to process efficiently
a vast amount of information about the spatiotemporal world
requires that image structure be extracted and represented
with optimal economy. Both perceptual and neurophysiol-
ogical vision research in the past two decades have been en-
livened by debate over whether the fundamental character
of early visual representation involves space-domain local
feature detection!-3 or more closely resembles a Fourier-like
decomposition into spatial-frequency components.47 As the
polarization between these two views became articulated, and
compelling evidence was marshaled on behalf of both theories,
many investigators sought critical experiments8-12 that would
definitively resolve the issue. More recently, conciliatory
voices'®-15 have affirmed that the debate was based on an il-
lusory dichotomy because, once a visual mechanism is deemed
linear, then its selectivities in either domain imply comple-
mentary ones in the other, and the crucial experimental results
could be captured equally well by modest versions of either
theory. The growing acceptance of the complementarity and
appropriateness of both descriptions-one undulatory and the
other localized-is reminiscent of the dissolving of the historic
wave-particle debate in quantum physics. Probably the
clearest voice of conciliation predates the spatial vision debate
itself and was that of Dennis Gabor, whose classic 1946
monograph on the theory of communication! was pointed out
to contemporary vision scientists by Maréeljal3 vis-d-vis in-
terpretations of cortical simple cell receptive-field profiles.
Gabor’s 1946 paper!® formally proved by the use of Schwarz
inequality arguments analogous to those underlying the in-
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determinacy relations of quantum mechanics that a signal’s
specificity simultaneously in time and frequency is funda-
mentally limited by a lower bound on the product of its
bandwidth and duration. Reviewing the gradual recognition
of this principle in the practical efforts of radio engineers in
the 1920’s, Gabor drew an interesting analogy: “... as the
principle of conservation of energy emerged from the slowly
hardening conviction of the impossibility of a perpetuum
mobile, this fundamental principle of communication engi-
neering arose from the refutation of ingenious attempts to
break the as yet unformulated law” (Ref. 16, p. 429). Citing
Heisenberg’s and Wey!’s related proofs, Gabor derived the
uncertainty relation for information. He furthermore found
the general family of signals that optimize this trade-off and
thus achieve the theoretical lower limit of joint uncertainty
in time and frequency, namely, all signals of the form s(¢) =
exp[—(t — to)2/a? + iwt], which in complex notation describes
the modulation product of a sine wave with arbitrary fre-
quency w and a Gaussian envelope of arbitrary duration «
occurring at epoch ¢o. Gabor elaborated a quantum theory
of information that consigns signals to regions of an infor-
mation diagram whose coordinates are time and frequency
and that has a quantal “grain,” or minimal area (a product of
frequency bandwidth times duration), dictated by the un-
certainty principle; the quantal grain can be redistributed in
shape but not reduced in area, and the general family of signals
that achieve this smallest possible grain size are the Gauss-
ian-modulated sinusoids. Finally, Gabor proposed repre-
senting arbitrary signals by a pseudoexpansion set of these
elementary signals, which he termed “logons” in the infor-
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mation plane, indexed by all different frequencies of modu-
lation and all different epochs of time.

Since 1980 several theorists concerned with spatial vision
have recognized the suitability of Gabor’s elementary signals
as models for simple-cell receptive-field profiles,!3-15,17-20
provided that these cells behave essentially linearly, as several
investigators have confirmed.'521-28 Typically two to five
interleaved regions of excitatory and inhibitory influences
weighted by a tapering envelope constitute the receptive-field
profile of a simple cell, and Gabor signals with suitably chosen
parameters invariably give a good fit to such spatial profiles.
Particularly important for this synthesis was the discovery
by Pollen and Ronner in 198117 of numerous pairs of adjacent
simple cells matched in preferred orientation and spatial
frequency but having a quadrature (90°) phase relationship
within their common receptive-field area. Obviously the
paramount significance of this finding is that a phase differ-
ence (optimally quadrature) is required between identical
harmonic components in a frequency expansion, such as that
envisaged in the Gabor scheme, even though such filters (while
complete) are only pseudo-orthogonal. In any case, the
well-established properties of simple-cell receptive fields as
both localized yet undulatory now fit within a unified theo-
retical framework, and although the interpretive debate about
what the Gabor-like representation achieves has hardly begun,
at least the descriptive debate seems largely resolved into a
synthesis of the two earlier views.

Today, however, this picture remains incomplete in several
important respects. First, most applications of the Gabor
framework to spatial vision have treated localization in one-
dimensional (1-D) terms (namely, how position uncertainty
Ax is related to spatial-frequency uncertainty Au), in spite
of the basic fact that a visual neuron’s receptive field is lo-
calized in a two-dimensional (2D) spatial visual manifold.
Second, the orientation selectivity of simple cells, which is
perhaps their most salient tuning property, has not been ex-
plicitly analyzed in the uncertainty framework nor related to
other tuning variables, such as spatial frequency and 2D
spatial resolution. These two omissions in the theory are
related to each other, and the analysis of either issue entails
an analysis of the other. Filling in the missing dimension in
the application of Gabor’s (1D) scheme to (2D) spatial vision
requires 2D filter theory20 and is a major focus of this paper.
Third, the role of several hidden constraints that do not play
an essential part in the 2D Gabor scheme but that evidently
are physiologically important limitations in the degrees of
freedom will be analyzed, in the light of recently acquired
empirical data on the 2D structure of simple-cell receptive-
field profiles.

2. GENERAL UNCERTAINTY RELATION FOR
TWO-DIMENSIONAL FILTERS

For a 1D complex signal or filter weighting function f(x), a
standard measure of effective width (Ax) is given by the
square root of the variance, or second moment, of its energy

distribution:
f ff*x2dx

f_ i ff*dx

(Ax)Z =
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where f*(x) is the complex conjugate of f(x), so their product
ff* corresponds to the energy distribution. For simplicity the
signal or filter here has been assumed to be origin centered (x
= (), and the denominator simply normalizes the measure of
effective width to be independent of the amplitude of f(x). If
f(x) has Fourier transform F(w), whose effective bandwidth
is also defined in terms of the analogous normalized second
moment (Aw)? of its energy distribution FF*, then the fa-
miliar?4 1D uncertainty principle specifies a fundamental
lower bound on the possible values of their product:
(Ax)(Aw) = 1/4x.

For 2D signals or filters f(x, y) there are several possible
generalizations of the concept of effective width, arising from
the existence of not one but three Cartesian second moments
for the (normalized and origin-centered) energy distribution

f(xy y)f*(x, y):
.[: ﬁ:xzf(x,y)f*(x,y)dxdy,

f_: f_: ¥2f(x, y)f*(x, y)dxdy,

f—z f_: xyf(x, y)f*(x, y)dxdy.

The first two of these compute variance around the y axis and
the x axis; the third (skew moment) computes asymmetry of
the diagonals. It is known that any 2D distribution can al-
ways be rotated so that its skew moment is zero, and the angle
of this rotation determines the distribution’s principal axes.
If a 2D distribution’s principal axes correspond to the x axis
and the y axis, then the second moment around each of these
axes is the square of the distribution’s effective width (Ax)
or effective length (Ay), and the product of these two quan-
tities (Ax)(Ay) measures its effective area. Thus we may
measure the effective (or occupied) area of a 2D signal or filter
in terms of the product of its Cartesian second moments
around the x and y axes, once it has been rotated so that these
are its principal axes.

Analogous to the 1D uncertainty principle cited earlier,
there are two 2D uncertainty principles constraining the ef-
fective width (Ax) and the effective length (Ay) of a 2D filter
or signal f(x, y) and the effective width (Au) and the effective
length (Av) of its 2D Fourier transform F(u,v). Regardless
of the principal axes or any separability conditions, it can be
shown?? that for any arbitrary f(x, y) centered on (xg, yo)
whose 2D transform F'(u, v) is centered on (ug, vg), the fol-
lowing two uncertainty principles apply:

(Ax)(Au) =

[f . (x — x0)%(x, y)f*(x, y)dxdy | 2

f flx, y)f*(x, y)dxdy

[f_.,, f_m (U = uo)2F (u, v)F* (u, v)dudo | /*

>t
4T

_: F(u, v)F*(u, v)dudy 1)
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0= y0% e, dzdy] V2

(Ay)(Av) = =
f_m J:mf(x,y)f*(x,y)dxdy

[Jm fm (v — vo)2F (u, V) F*(u, v)dudy | /2 .
X

> .

» o @ 47
f f F(u, v)F*(u, v)dudv
—o J—w (1b)

These two uncertainty principles are the fundamental
conditions, from which follow certain other relations. The
lower bounds in Egs. (1a) and (1b) can be achieved only for
certain functions f(x, y) whose principal axes are parallel to
x and y axes, and similarly for their transforms F(u,v) and
the u and v axes (although these two conditions do not imply
each other). If these functions and transforms are rotated out
of such axes, the products of effective widths will in general
increase. If the principal axes do correspond, then each of the
products (Ax)(Ay) and (Au)Av) represents the effective area
occupied by the signal or the filter in the corresponding 2D
domain. It follows that the joint resolution that can be
achieved by any 2D filter or signal in the two 2D domains,
defined by these two occupied areas, is thus also constrained
by a fundamental lower limit:

(Ax)(Ay)(Au)(Av) = 1/1672, 2)

This new uncertainty principle, derived from the fundamental
relations [Egs. (1)], expresses the theoretlcal limit of joint 2D
resolution in the two 2D domains.

3. JOINT TWO-DIMENSIONAL ENTROPY
MINIMIZATION

It can be shown that the following falﬁily of functions f(x, y)
and their 2D Fourier transforms F(u, v) achieve the lower
bound in the above inequalities: *
f(x,y) = exp{—7[(x — x0)%a? + (y — ¥0)%b2]}
X exp{—2mi[uo(x — x0) + vo(y = yo)]},
F(u,v) = exp{—m[(u — ug)?/a? + (v — vo)2/b2]}
X exp{—2mi[xo(u — ug) + yolv — vo)l}.  (3)

Using the definitions for effective width and length in both
domains [Eqs. (1a) and (1b)], one obtains

1 1
Bo) = W=
_a _ b .
(Au) = 2\/F’ (Av) = 2\/;

Thus the joint 2D resolution for this family of 2D signals or
filters, defined by the product of their occupied areas in the
two 2D domains [Eq. (2)], achieves the theoretical limit of
1/16w2 regardless of the values of any of the parameters.
Because of the analogy between this family of optimal 2D
functions and Gabor’s® time-varying signals, we shall call this
the family of 2D Gabor functions.

The 2D Gabor function f(x, y) [Eqgs. (3)] is the product of
an elliptical Gaussian with an aspect ratio (b/a) whose cen-
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troid is located at (x¢, yo) times a complex exponential rep-
resenting harmonic modulation with spatial frequency (uq2
+ vo?)V/2 and orientation arctan(ve/ug). The amplitude and
the phase are specified by an assumed complex coefficient
Ae!¢ multiplying Egs. (3). Inslightly more general form, both
f(x, y) and F(u, v) would be defined as an exponentiated
complete second-order bivariate polynomial

exp[—(Ax2 + Bxy + Cy2+ Dx + Ey + F)],

where B2 < 4AC and D, E, and F are complex, but we have
assumed for simplicity that f(x, ¥) has been rotated so that
its principal axes correspond to the x and y axes and therefore
that the cross-product coefficient B is zero. It should be noted
that 2D Gabor functions (1) have the same functional form
in both 2D domains, as can be verified by applying the simi-
larity theorem and the shift/modulation theorem to Eqgs. (3);
(2) are polar separable in neither domain; and (3) are Carte-
sian separable only in certain special cases.

Actual filter impulse-response functions and neural re-
ceptive-field profiles are real functions that can be regarded
as projected out of such analytic functions, containing in
quadrature both the even- and the odd-symmetric versions
(cosine and sine parts). To obtain a physically meaningful
quantity from the analytic function one can either simply take
its real part or add to it its reflection in negative frequencies
with conjugate amplitude. Gabor (Ref. 16, p. 432) discusses
the relative merits of both methods; here we shall use the
second method, and hence a real filter profile generated by
Egs. (3) will have a two-sided transform. For example, con-
sidering the two canonical quadrature cases, if f(x, y) is in pure
cosine phase, then its transform is %{F(u, v) + F(—u, —v)};
whereas, if f(x, ¥) is in pure sine phase, then its transform is
Y{—iF(u,v) + iF(—u, —v)}. Intermediate phases represented
by the appropriate mixture of these cases would generate filter
profiles with neither symmetry nor antisymmetry.

A plot of a representative even-symmetric member of the
2D Gabor filter family, as originally proposed by Daugman,20
isshown in Fig. 1. Referring to the parameters in Eqgs. (3), this
particular filter has xo = yo = 0, ug = 0, vg = %4 cycles/deg,
and a2 = b2 = 16/w deg~2. It should be noted that different

SPATIAL FILTER PROFILE FREQUENCY RESPONSE

Fig.1. Aneven-symmetric member of the family of 2D Gabor filters,
with unity aspect ratio, and its 2D Fourier transform. Members of
this filter family generated by Eqs. (3) have the sharpest possible joint
resolution of information in the two 2D domains. The number of
significant sidelobes in the space-domain profile inversely determines
the filter’s spatial-frequency bandwidth and orientation bandwidth;
the spatial periodicity and orientation of the lobes specifies the filter’s
preferred spatial frequency and orientation. Different members of
this optimal filter family are an excellent description of the 2D neural
receptive fields found in the visual cortex, as illustrated in Fig. 3.
CPD, cycles/degree. (From Ref. 20.)
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Table 1. Corresponding Filter Properties in Space
and Spectral Domains
2D Space Domain 2D Frequency Domain

Modulate filter envelope by
spatial frequency wo in
wave-vector orientation

Position filter centroid at
space-domain coordinates
(x0, Yo)

Rotate filter through angle 8
around origin of
coordinates

Stretch (compress) filter in x
direction by factor

Stretch (compress) filter in y
direction by factor 8

Position spectral centroid at
Fourier plane coordinates
(1o, vo), Wwhere
uo = wo cos{fo),
vo = wo sin(fo)

Modulate transform by
complex exponential
having spectral frequency
(x% + yo?)/2 and
orientation arctan(yo/xo)

Rotate transform through
angle # around origin of
coordinates

Compress (stretch) spectrum
in u direction by factor «

Compress (stretch) spectrum
in v direction by factor 8

Set envelope aspect ratio to
1/A

Set envelope aspect ratio to A

choices for the values of these parameters would center the
filter at different spatial locations (xo, o) and give it different
preferred spatial-frequency and orientation responses cor-
responding to centroid locations (g, +v), thus paving both
2D domains; and, depending on the bandwidth parameters
a and b, a division of labor is created for favoring resolution
in either the 2D space domain (for large values of a and b) or
the 2D frequency domain (for small values of a and b), or, by
mixing these cases, for favoring spatial resolution in one di-
rection while favoring frequency or orientation resolution in
the perpendicular direction. The joint effects of these oper-
ations for paving both 2D domains simultaneously and for
specifying certain divisions of labor for resolution in the two
domains, subject to the inescapable uncertainty relations, are
summarized in Table 1.

The division of labor for different forms of resolution in the
two 2D domains, for different members of the 2D Gabor filter
family, is illustrated graphically in Fig. 2. The left-hand
column represents a bird’s-eye view of three even-symmetric
filters, all having the same modulation spatial frequency and
orientation but different width/length aspect ratios as indi-
cated by the elliptical contours representing the 1/e amplitude

level of the 2D envelopes. Similarly, the right-hand column -

of Fig. 2 represents the approximate 1/e amplitude contour
for the two parts of the 2D Fourier transform of each of these
filters. In the frequency domain the centroids of these filters
all have the same locations, corresponding to peak spectral
response at spatial frequency wo in the vertical orientation as
dictated by the pattern of modulation in the 2D space domain.
But there are major differences in the three filters’ resolutions
for spatial frequency and orientation (the radial and angular
dimensions of the contours in the frequency domain), which
are seen to vary inversely with the two spatial dimensions.
Within the trigonometric limits of the construction in Fig.
2, approximate expressions are derived in the three right-hand
panels for the corresponding filter’s orientation half-band-
width Af,/, (in radians) and spatial-frequency bandwidth AF
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(in cycles/degree), in terms of the filter space-domain di-
mensions o and 3 (in degrees) and its modulation frequency
wo (in cycles/degree). For simplicity, the expressions for or-
ientation bandwidth Af /2 assume that these angles are small

TWO-DIMENSIONAL GABOR OPTIMAL FILTERS
SPACE DOMAIN SPATIAL-FREQUENCY DOMAIN

A.
a AF
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1
" AF=1/4
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Fig.2. Bird’s-eye view of three members of the set of 2D Gabor op-
timal filters, all having the same preferred spatial frequency and or-
ientation. The three pairs of panels illustrate the dependence of a
filter’s spatial-frequency bandwidth and orientation bandwidth on
its space-domain envelope dimensions; its preferred frequency and
orientation are independent of those dimensions. A, A circular filter
envelope in the space domain is supported in the frequency domain
by the sum of two circular regions whose centers correspond to the
filter’s modulation frequency and whose spatial-frequency bandwidth
and orientation bandwidth are inversely related to the space-domain
envelope diameter. B, Elongating the filter’s receptive field in the
direction parallel to its modulation sharpens its orientation bandwidth
A% but has no effect on its spatial-frequency bandwidth AF. C,
Elongating the field instead in the perpendicular direction sharpens
its spatial-frequency bandwidth AF but has no effect on its orienta-
tion bandwidth A6%. Thus such filters can negotiate the inescapable
trade-offs for resolution in different ways, attaining, for example,
sharp spatial resolution in the y direction (at the expense of orien-
tation selectivity) or sharp spatial resolution in the x direction (at the
expense of spatial-frequency selectivity). Such a division of labor
among filters, or visual neurons, permits the extraction of differen-
tially resolved spatial-spectral information from the image. Always,
however, for 2D Gabor filters the product of the 2D resolutions in the
two 2D domains is the same and equals the theoretically attainable
limit.
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enough for sin(f) to be approximated by # in radians. For
filters with orientation half-bandwidths larger than about 30°,
the expressions for Afly /2 should be replaced by arcsine argu-
ments, and for still larger angles (corresponding to very short
filters in the space domain) the orientation bandwidth and
even the preferred orientation would start to depend dra-
matically on spatial frequency. The reciprocal scaling rela-
tions depicted graphically in Fig. 2 and the expressions for
bandwidths in terms of space-domain properties can be de-
rived from the 2D similarity theorem and the 2D modulation
theorem, which relate the shapes and locations of the fre-
quency-domain ellipses to the filter modulation and dimen-
sions in the space domain.

A fundamental property captured in Fig. 2 is that the
product of the occupied areas of any filter’s analytic function
in the two 2D domains is always independent of any dilation,
translation, or modulation of its profile, and for 2D Gabor
filters contained in the analytic functions of Egs. (3) this
product of occupied areas is always as small as it can possibly
be, regardless of the values of any of the six parameters that
generate the different filters in the family. A further property
captured in Fig. 2 is that for different filters constrained to
occupy the same total amount of 2D space-domain area (e.g.,
those in panels B and C), any gain in spatial-frequency reso-
lution AF must be paid for by a loss in orientation resolution
Af19; conversely, any gain in orientation resolution must be
paid for by a loss in spatial-frequency resolution. This is
because such filters that have a constant degree of 2D spatial
resolution (integration area) must also occupy a fixed amount
of area in the 2D frequency domain, and thus the frequency-
domain ellipses in panels B and C are constant in area while
their different shapes negotiate different trade-offs between
A01/2 and AF.

Finally, in analogy with Gabor’s original information di-
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agram (time—frequency plane), it is useful to think of these
2D spatial filters as located in a four-dimensional (4D) in-
formation hyperspace whose four orthogonal axes are , y, u,
and v (the 2D space and 2D frequency coordinates). In this
geometrical interpretation of spatial information there is a 4D
grain size, or minimal quantal volume, taken up by any spatial
signal or filter, namely, 1/1672 as noted in relation (2). Ar-
bitrary 2D signals, such as actual images, could be efficiently
represented by decomposition into the elementary signals
defined in Eqs (3). Integrating the product of the image in
question times each elementary signal results in a coefficient
that specifies the amount of energy contained in each of these
minimal quantal volumes that pack information hyperspace.
Their minimal volume makes them the natural basis for image
analysis in which both 2D spatial location and 2D spectral
signature are recognized as important parameters. This
completes our generalization of Gabor’s information diagram
and scheme for decomposition.

4. SIMPLE-CELL TWO-DIMENSIONAL
RECEPTIVE-FIELD PROPERTIES IN STRIATE
CORTEX

We turn now to empirical properties of simple cells in mam-
malian visual cortex in order to apply the 2D Gabor theoretical
framework developed above for understanding their recep-
tive-field profiles and the relationship between their selec-
tivities for orientation and spatial frequency. Inasmuch as
the preceding analysis is based on linear theory, the scope of
an empirical characterization must be largely limited to linear
neurons. Of the three classical categories of neurons found
in the striate cortex as enumerated by Hubel and Wiesel, 12
namely, simple, complex, and hypercomplex cell types, only
the simple cells are generally considered linear integrators of

" Difference

Fig. 3. Illustration of experimentally measured 2D receptive-field profiles of three simple cells in cat striate cortex (top row) obtained in the
laboratory of L. A. Palmer and J. P. Jones (University of Pennsylvania Medical School). Each plot shows the excitatory or inhibitory effect
of a small flashing light or dark spot on the firing rate of the cell, as a function of the (x, ¥) location of the stimulus, computed by reverse correlation
of the 2D stimulus sequence with the neural-response sequence. The second row shows the best-fitting 2D Gabor function for each cell’s re-
ceptive-field profile, based on Egs. (3) with the parameters fitted by least squares. The third row shows the residual error between the measured
response profile of each cell and Egs. (3). In formal statistical tests, the residuals were indistinguishable from random error for 33 of the 36

simple cells tested. (From Ref. 28.)
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luminance within their receptive fields by their weighting
functions.21-28 Provided that their discharge threshold is
exceeded, simple cells linearly weight the local spatial-lumi-
nance distribution by their 2D receptive-field profile, con-
sisting of excitatory and inhibitory influences on the cell’s
firing frequency. In the classical formulation,?® the recep-
tive-field profile of a visual neuron is a plot of its relative re-
sponse to a point of light as a function of the point’s location
in visual space. Under the condition of linearity, then, the
response of a given neuron to an arbitrary image is the 2D
integral of the product of its receptive-field profile times the
visual image 2D luminance distribution, and the neuron can
be treated as a 2D spatial filter.20

Unfortunately, virtually the entire body of quantitative
reports on simple cells’ receptive-field profiles has been 1D.
Nonetheless, the existing descriptions are consistent with the
filter forms shown in Figs. 1 and 2. The basic receptive-field
structure of simple cells consists of several (usually two to five)
tapering rows of alternating excitatory and inhibitory subre-
gions,%15:23,26 glthough the early characterizations of Hubel
and Wiesell2 described only the central most salient two or
three subregions (their bipartite and tripartite cell types).
DeValois et al.? observed that “Quantitative studies of sim-
ple-cell receptive fields show them to have a distinctly periodic
structure, with additonal side-bands beyond those seen in the
initial studies.” This periodic tapering structure has recently
been more extensively and quantitatively documented.?”

2D empirical studies of receptive-field profiles, recently
completed,2® have quantitatively confirmed for 30 simple cells
in cat visual cortex the appropriateness of the 2D Gabor filter
family expressed in Egs. (3). Novel 2D experimental tech-
niques were developed for inferring a simple cell’s response
to a small bright or dark spot of light flashed in 256 different

(x, ) locations specified by a 16 X 16 grid covering the cell’s -

receptive field. After some 10,000 randomly positioned
stimulus presentations lasting 50 msec each, the recorded
neural-firing response train of a given cell was reverse corre-
lated with the stimulus presentation sequence to calculate,

for each of the 256 locations, the excitatory or inhibitory effect

of the spot of light on the firing probability of the cell. These
correlograms, which constitute empirical 2D receptive-field
profiles, are shown in Fig. 3 for some of the 36 simple cells so
studied. The top row gives the empirical 2D profile for three
representative cells, and the second row shows the best-fitting
member of Eqgs. (3) with parameters estimated by the method
of least-squared error by a simplex routine. The residual
differences between the best-fitting 2D Gabor filter and the
original data surfaces are shown for each cell in the third row.
Formal statistical chi-squared tests on whether these residual
error surfaces arise from random noise accepted the 2D Gabor
filter hypothesis for 33 of the 36 cells studied and rejected it
marginally for the remaining 3.

5. SIMPLE-CELL CONSTRAINTS ON DEGREES
OF FREEDOM IN THE TWO-DIMENSIONAL
GABOR FILTER FAMILY

There are eight degrees of freedom in the 2D Gabor filter
family: two coordinates (xo, yo) specifying the location of the
filter in 2D visual space; two modulation coordinates (1o, o)
specifying the location of the filter in 2D frequency space,
interpretable as preferred orientation and spatial frequency;
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the phase of the modulation component, which determines
the symmetry-antisymmetry mixture of the filter; and the
width and the length of the 2D elliptical Gaussian envelope
(a and b), which are reciprocal in the two 2D domains, and the
relative angle between the 2D elliptical Gaussian axes and the
orientation of the modulation wave vector. Of these eight,
the first four (xo, yo, La, Uo) are the independent variables that
form the axes of our information hyperspace and must be
spanned in order to pave the space. The phase parameter
need take on only two (arbitrary) values in order to specify the
coefficient for each location in 4D information hyperspace,
and the three remaining Gaussian parameters govern band-
widths and the axes of separability in the sampling scheme.

In this section we discuss apparent physiological constraints
on the four free parameters remaining after the filter center
coordinates have been specified in the two 2D domains, as far
as existing physiological data on populations of simple cells
permit.

A. Phase

The fundamental discovery by Pollen and Ronner!? of adja-
cent pairs of simple cells matched in preferred spatial fre-
quency and orientation but having a quadrature phase rela-
tion (90° phase offset in their response to drifting sine-wave
gratings) does not in itself imply that there are preferred or
canonical absolute phase angles, such as sine and cosine, rel-
ative to receptive-field centers. Although such canonical 1D
receptive-field profiles with either pure even or pure odd
symmetry are frequently presented,®1%2! asymmetric sim-
ple-cell receptive fields are known to exist as well.11323 In
the 2D study?8 of receptive-field profiles of 36 simple cells
discussed in Section 4 and illustrated in Fig. 3, in which the
2D profiles were fitted by Eqgs. (3) with all free parameters,
the distribution of best-fitting absolute phases relative to
receptive-field centers emerged to be remarkably uniform for
the population of cells. Of course, such a uniform distribution
of absolute phases, which can be represented by a free additive
mixture of pure even and pure odd symmetries, is not in-
compatible with the Pollen-Ronner finding of quadrature
relative phases between adjacent cells.

B. Orientation Bandwidths, Spatial-Frequency
Bandwidths, and Spatial Dimensions
It is known that neurons in the visual cortex have a broad
range of receptive-field dimensions, orientation bandwidths,
and spatial-frequency bandwidths. These empirical pa-
rameters are statistically correlated in varying degrees with
one another and with other variables, such as eccentricity
(distance in visual space from the fovea), and with the cell’s
preferred spatial frequency. Such correlations when strong
imply significant constraints on the degrees of freedom of the
2D filter family and may reveal an important underlying logic
in the sampling scheme that paves information hyperspace.
DeValois et al. report that the positive correlation between
cells’ orientation bandwidth and spatial-frequency bandwidth
is “the largest correlation we found between any of the vari-
ables we measured” (Ref. 29, p. 553). The typical values en-
countered for these bandwidths in cat cortical simple cells are
presented statistically in Tables 2 and 3, based on eight in-
dependent studies. Clear central tendencies for both band-
widths consistently emerge: The mean of the mean orienta-
tion half-bandwidths found in these studies, weighted by the
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Table 2. Orientation Bandwidths of Cat Cortical
Simple Cells: Half-Width at Half-Response

Mean (deg) Range (octaves) N Ref.
17 8-31 40 30
16.7 7-30 39 31
13.9 5-28 14 32
19.5 7-32 54 33

Weighted mean of the means, 17.5°; total N, 147

Table 3. Spatial-Frequency Bandwidths of Cat
Cortical Simple Cells: Full Width at Half-Response

Mean (octaves) Range (deg) N Ref.
1.3 0.7-2.5 184 21
1.2 0.5-2.5 unknown 34
1.3 0.6-1.9 16 23
1.47 0.96-2.4 27 15

Weighted mean of the means; 1.32 octaves; total N, > 227

number of cells in each study, is 17.5° (total N = 147), and the
mean of the mean spatial-frequency full bandwidths is 1.32
octaves (total N = 227). Although only data from cat simple
cells are summarized in these tables, the existing primate
bandwidth statistics are comparable. DeValois et al.2® report
that “The median (spatial frequency full-bandwidth) for
simple cells (both foveal and parafoveal) is about 1.4 octaves
...” (N = 225) in the macaque; similarly, their data (Ref. 35,
p. 541) for orientation half-bandwidths in the macaque show
a median of about 20° (N = 139).

The positive correlation that has been observed?9:3¢ between
orientation bandwidths and spatial-frequency bandwidths
of simple cells imposes an important constraint on the joint
behavior of the free parameters in Eqs. (3). We noted pre-
viously that 2D Gabor filters, which occupy a fixed amount
of area in the 2D space domain and hence a fixed amount of
2D frequency-domain area centered on a given modulation
frequency, must have an inverse correlation between these two
bandwidths. Asisindicated in relation (2) and in Figs. 2B and
2C, for such a family with constant area product (Au)(Av),
any changes in filter shape that improve orientation resolution
will worsen spatial-frequency resolution and vice versa. On
the other hand, for a family of filters occupying different
amounts of area but preserving a constant spatial aspect ratio
(Ax)/(Ay), and hence also a constant aspect ratio (Av)/(Au)
in the 2D frequency domain, the orientation bandwidth and
spatial-frequency bandwidth would be positively correlated
as observed empirically.

The exact relationship for 2D Gabor filters is worth deriv-
ing, for comparison with data and in order to infer parameter
constraints. Let us define A to be the width/length spatial-
aspect ratio (Ax)/Ay) of a 2D Gabor filter; we know from Egs.
(1) that if (Ax)/(Ay) = A, then also (Av)/Au) = X\. For the
canonical filter forms shown in Fig. 2, which have moderate
bandwidths and wp modulation wave vectors parallel to the
principal axes, we can interpret the height (Av) of the fre-
quency-domain ellipses geometrically in terms of the filter’s
orientation half-bandwidth Afy/,:

(AU) = 2(0() Sil’l(ABl/g).
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Similarly, the spatial-frequency bandwidth (Au) can be ex-
pressed in octaves so that it is commensurate with physio-
logical data. For a filter whose center frequency is wg and
whose full bandwidth (in cycles/degree) is (Au), the full
bandwidth expressed in octaves, Aw, is defined as

Ao = 1o [M]
82| 00 — (Aw)/2
80, in inverted form,
_ (24« — 1)
(Au) = 2wq —-(2Aw T .

Combining these expressions, we arrive at the following re-
lationship between a 2D Gabor filter’s spatial width/length
aspect ratio A, orientation half-bandwidth Af/, and spa-
tial-frequency bandwidth Aw in octaves:

(280 — 1)
A (28 + 1)|

Equation (4) expresses explicitly the fact that for a fixed
spatial aspect ratio A, there is a positive correlation between
spatial-frequency bandwidth and orientation bandwidth.
This relationship between bandwidths is independent of the
receptive-field modulation frequency wy; it is clear from Fig.
2 that if this frequency increases or if the spatial 2D envelope
simply expands, then both the orientation bandwidth and the
spatial-frequency bandwidth (in octaves) become sharper.
The relative payoff of these operations for the two bandwidths
is dictated by the spatial-aspect ratio A. A small A favors
orientation selectivity at the expense of spatial-frequency
selectivity, whereas a large A favors spatial-frequency selec-
tivity at the expense of orientation.

Space-domain measurements of A in populations of simple
cells?® usually range between 1/4 and 1. In order to fit the
observed strong correlation between orientation bandwidth
and spatial-frequency bandwidth noted by Movshon,36 Table
4 has been constructed on the basis of Eq. (4) with A = 0.6 to
show the correlation predicted by such 2D Gabor filters. We

(4)

ABy 5 = arcsin

‘note first that the means and the ranges of bandwidths in this

table correspond to the actual empirical bandwidth data as
summarized in Tables 2 and 3. Table 4 shows that for various
2D Gabor filters whose spatial-frequency bandwidths range
from 0.5 to 2.5 octaves and with A = 0.6, the predicted orien-
tation half-bandwidths increase steadily at the rate of about
10° per octave. This relationship is in striking agreement
with that reported empirically by Movshon,38 who wrote:

Table 4. Predicted Correlation between Orientation
Bandwidth and Spatial-Frequency Bandwidth for 2D
Gabor Filters with 0.6 Width/Length Spatial Aspect

Ratio®
Spatial-Frequency Orientation
Full Bandwidth Half-Bandwidth
(octaves) (deg)
0.5 5.9
1.0 11.5
1.5 16.7
2.0 21.1
2.5 24.8

¢ From Eq. (4).
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“QOrientation selectivity and spatial frequency selectivity are
well correlated with one another: orientation half-widths
increase by about 10 degrees for each octave increase in spatial
frequency bandwidth.” (N = 114 cells; correlation coefficient
r=0.7.)

Similar experiments in primate visual cortex by DeValois
et al.? report a slightly smaller positive correlation of 0.5
(significant beyond the 0.001 level) between these two vari-
ables in 168 macaque striate cortical cells. A two-parameter
regression line fitted by least squares (Fig. 8 of Ref. 29) hasa
slope considerably higher than that reported by Movshon3®
because their intercept parameter was free rather than con-

strained to go through the origin; consequently, their regres-

sion line predicts that a cell with a spatial-frequency band-
width of 0.4 octave would have infinitely sharp orientation
tuning. If their regression line were constrained to have zero
intercept, it appears that their data would yield about the
same regression slope as Movshon’s. In any case, the re-
gression line of DeValois et al.2? is well described (for Aw
between 1 and 2 octaves) by a 2D Gabor filter having a spatial
aspect ratio of A = 1. When Aw = 1 octave, Eq. (4) predicts
for this 2D Gabor filter that Af; /s = 19°, and their empirical
regression line predicts 17°; when Aw = 1.5 octave, the Gabor
filter predicts Afy/2 = 29°, and their regression line predicts
31°; and when Aw = 2 octaves, the Gabor filter predicts Afly»
= 37°, and their regression line predicts 45°.

The variety of orientation bandwidths and spatial-fre-
quency bandwidths encountered suggests that different cells
occupy information hyperspace with different strategies,
sometimes favoring A6/, at the expense of Ay, sometimes
favoring Ax at the expense of Aw, and so on. Presumably
these variations represent a division of labor among diverse
strategies for extracting different kinds of spatial information
subject to the inescapable uncertainty relations [Egs. (1a) and
(b)]. Still, the range?® of spatial-aspect ratios, typically 1/4
< A <1, is relatively narrow when placed in the context of at
least a 30:1 range of simple-cell center diameters?® (even just
in the foveal projection), corresponding to a 1000:1 range of
receptive-field areas. Interpreting this observation in terms
of constraints on the parameters a and b in Eqgs. (3), we con-
clude that the ratio (b/a) is relatively stable, whereas the
product ab has an enormous range of at least a thousand-
fold.

C. Correspondence of Modulation Axis and Envelope
Axes

A final empirical constraint on the degrees of freedom in the
general family of 2D Gabor filters represented by Egs. (3) is
the relative angle between the modulation wave vector and
the principal axes of the elliptical Gaussian envelope. In Figs.
1 and 2 these were always parallel, but this condition is not
necessary for achieving the theoretical minimum of joint oc-
cupied-area products in the two 2D domains. The 2D spectral
consequence of rotating the modulation wave vector relative
to the principal axes is a rotation of the elliptical centroids
around the origin of coordinates of the Fourier plane, without
rotation of the ellipses themselves about their centroids.
Thus the spectral masses are simply moved (without change
of attitude) to the (ug, vg) coordinates of the modulation
wave vector, as can be understood from the 2D modulatjon
theorem noted in Table 1. In Fig. 2B, for example, noncor-
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respondence of modulation axes and envelope principal axes
would, in the 2D frequency domain, lift the conjugate spectral
ellipses above and below the u axis while keeping their major
axis parallel to it. Obviously this has a severe consequence:
The filter’s preferred spatial frequency would depend dra-
matically on the test component’s orientation, and conversely
the filter’s orientation preference would depend greatly on
spatial frequency. To give a concrete example: In Fig. 2B,
oblique modulation within this envelope would rotate the
spectral centroids to 45° in the 2D frequency domain, re-
sulting in quite different orientation preferences for different
spatial frequencies. Specifically, at the 1/e levels of filter
sensitivity, the preferred orientation would change from 32°
to 66° while the spatial frequency varied over a 0.75-octave
range. Conversely, the filter’s preferred spatial frequency
would change by 0.75 octave while the test orientation
spanned this 34° range.

Is such behavior observed neurophysiologically in simple
cells? Unfortunately it is not yet possible to answer this
question definitively because virtually all investigations have
made an implicit assumption of spectral polar separability,
namely, that any given cell has a preferred orientation and a
preferred spatial frequency that are independent of the value
of the other variable. A full 2D spectral characterization,20
rather than two 1D tuning curves, would be necessary to reveal
properties of nonseparability such as that possessed by the
2D Gabor filter in the above example. In the recent investi-
gation28 employing full 2D spectral methods as well as mea-
suring a full 2D spatial impulse-response function as illus-
trated in Fig. 3, it was found that for the 36 cat simple cells
studied and simplex fitted to Eqgs. (3) with all free parameters,
only 50% had best-fitting modulation wave vectors within
+10° of the elliptical Gaussian major axis. The remaining
50% showed noncorrespondences at an exponentially decaying

rate out to 45°. Although more data concerning this degree -

of freedom are required, it appears that there is significant
tendency for simple cells to have a modulation axis in corre-
spondence with the field axis. The spectral consequence is
a tendency for the 2D spectral masses to align radially in the
2D frequency plane (as seen in Fig. 10 of Ref. 29) and thus to
keep a cell’s preferred orientation relatively independent of
spatial frequency.

To summarize: In this section we have noted several major
physiological constraints on the degrees of freedom in the
proposed 2D Gabor filter family represented by Egs. (3), in
terms of the joint behavior of the parameters a, b, u,, and vg
across simple-cell populations. In particular, the orientation
bandwidths and spatial-frequency bandwidths that these
parameters together govern are constrained by the means and
ranges given in Tables 2 and 3. Moreover, the relatively
strong positive correlation observed?%:3 between the A/, and
Aw bandwidths of simple cells (as noted in Table 4) constrains
the aspect ratio A = b/a to a relatively small range, whereas
the product ab varies over at least a thousandfold range.
Finally, based on scantier data, it appears that the absolute
phase of simple-cell receptive-field modulation (and hence
degree of symmetry) is a rather unconstrained parameter,
whereas the axis of modulation is rather more constrained to
correspond to the receptive-field envelope axis and thus tends
to keep spectral-response regions aligned radially in the 2D
frequency plane.
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6. CONCLUSIONS

2D linear spatial filters are constrained by general 2D uncer-
tainty relations Egs. (1a) and (1b), which limit their attainable
joint resolution in the 2D space domain and the 2D frequency
domain. The family of 2D filters generated by Egs. (3) op-
timizes these uncertainty relations and thus achieves the
theoretical limit of joint resolution in an information hyper-
space whose four axes are interpretable as the two coordinates
of visual space plus the polar spectral variables of orientation
and spatial frequency. Each such theoretical filter occupies
one irreducible quantal volume in the information hyperspace,
corresponding to an independent datum, and thus an en-
semble of such filters can encode information with optimal
efficiency along these four coordinates.

Simple cells in the visual cortex are known to be selective
for these four coordinates, each cell having an x, y location in
visual space, a preferred orientation, and a preferred spatial
frequency. It is well known2 that the first three of these
variables are sampled in a systematic way by striate simple
cells, and there is evidence®2937 for a systematic sampling of
the fourth variable as well. The question arises of the effi-
ciency of such sampling. Previous applications of Gabor
theory for addressing this issue in spatial vision have been
basically 1D and therefore have not explicitly placed resolu-
tion for orientation in the same framework as resolution for
spatial frequency and the two dimensions of space-domain
resolution. Recent 2D data have been presented here that
suggest that the various 2D receptive-field profiles encoun-
tered in populations of simple cells are well described by this
optimal family of 2D filters.

Deeper constraints appear to limit the degrees of freedom
of the 2D filter set actually adopted by linear striate simple
cells. The observed ranges of orientation bandwidths and
spatial-frequency bandwidths, and the correlation between
these two, indicate that the receptive-field width/length as-
pect ratios are rather tightly constrained (between 1/4 and 1),
whereas the field widths and lengths themselves vary over an
enormous range. There is a division of labor among simple
cells for the resolution of information along the different axes
of information hyperspace, some cells, for example, favoring
orientation selectivity at the expense of spatial resolution in
one direction, and so on. Further constraints evidently act
on a cell’s field modulation orientation in relation to the re-
ceptive field’s principal axes, as indicated both by 2D space-
domain least-squares fits of the free parameters and by the
tendency for the elongated 2D spectral-response regions to
align radially in the frequency plane along a polar grid.

The model of early 2D spatial visual representation sug-
gested by this 2D generalization of Gabor’s scheme for ana-
lyzing temporal signals is one in which polar 2D spectral sig-
natures are extracted within local 2D spatial windows of the
retinal image. The original proponents of such an interpre-
tation of visual cortical neurons were Pollen et al.,5 who first
hypothesized a local 2D spectral analysis within “restricted
regions of visual space.” The present formulation of recep-
tive-field organization based on the principle of joint entropy
minimization in information hyperspace leads essentially to
a formal realization of their concept. The richness of repre-
sentations based on local spectral signatures is exemplified

by the speech spectrogram, in which a spoken sentence is
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decomposed into format frequency bands within local win-
dows of time (Ref. 38, pp. 142-184).

Important questions remain concerning the sampling
strategies adopted by ensembles of simple cells for spanning
the four principal tuning variables. The concept of the hy-
percolumn, introduced by Hubel and Wiesell-2 for describing
ensembles of neurons that span a complete set of orientation
preferences, is suggestive of a modular organization that
coarsely embeds the 2D Fourier plane in polar coordinates
within each local region of the retinotopic mapping of visual
space, which itself has a polar geometry. Understanding the
sampling logic of embedding a local polar spectral mapping
within the global spatial one will require both further empir-
ical data on joint population properties of cortical neurons and
novel theoretical analysis.3?
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